Consider the following data X 4 6 8 10 12 15 20 25 39 48 Y 1
Consider the following data:
X 4 6 8 10 12 15 20 25 39 48
Y 12 21 25 34 40 48 65 75 100 160
Calculate:
(v) Construct a 90% prediction interval when XP=55
Show your work
Solution
From the data given we find regression line between x and y using least squares method.
That equation would help us to find the prediction interval for x =55
The equation of the regression line is:
y = 1.816 + 3.004?x
Find X?Y and X2 as it was done in the table below.
Step 2: Find the sum of every column:
?X=187 , ?Y=580 , ?X?Y=16669 , ?X2=5435
Step 3: Use the following equations to find a and b:
ab=?Y??X2??X??XYn??X2?(?X)2=580?5435?187?1666910?5435?1872?1.816=n??XY??X??Yn??X2?(?X)2=10?16669?187?58010?5435?(187)2?3.004
Step 4: Substitute a and b in regression equation formula
y = a + b?x= 1.816 + 3.004?x
--------------------------------------------------------------------------
Prediction for x = 55
y = 1.816+3.004(55) = 167.036
-------------------------------------------------------------
var(y) = 5172-3364=1808
margin of error = 1.64(sy of y) = 1.64(42.52)=69.73
| X | Y | X?Y | X?X |
| 4 | 12 | 48 | 16 |
| 6 | 21 | 126 | 36 |
| 8 | 25 | 200 | 64 |
| 10 | 34 | 340 | 100 |
| 12 | 40 | 480 | 144 |
| 15 | 48 | 720 | 225 |
| 20 | 65 | 1300 | 400 |
| 25 | 75 | 1875 | 625 |
| 39 | 100 | 3900 | 1521 |
| 48 | 160 | 7680 | 2304 |
