Compute the charge on the capacitor at the following times a
Solution
A)
Charge on the capacitor is given by:
Q = Qo*(1-e^(-t/RC))
where:
Qo = final charge = C*V = 12.8*10^-6*60 = 7.68*10^-4 C
So, at t = 0s,
charge , qo = Qo*(1-e^(-0)) = 0 <----answer
At t = 5s,
q(5) = 7.68*10^-4*(1-e^(-5/(12.8*10^-6*0.885*10^6)))
= 2.74*10^-4 C <-----answer
At t = 10s,
q(10) = 7.68*10^-4*(1-e^(-10/(12.8*10^-6*0.885*10^6)))
= 4.5*10^-4 C <------answre
At t = 20s,
q(20) = 7.68*10^-4*(1-e^(-20/(12.8*10^-6*0.885*10^6)))
= 6.47*10^-4 C
At t = 100s
q(100) = 7.68*10^-4*(1-e^(-100/(12.8*10^-6*0.885*10^6)))
= 7.68*10^-4 C
B)
Current in the circuit is given by:
I = Io*(e^(-t/RC))
where Io = V/R = 60/(0.885*10^6) = 6.78*10^-5 A
So, for t = 0s,
i(0)= 6.78*10^-5*(e^0) = 6.78*10^-5 A <-------answer
for t = 5s,
i(5) = 6.78*10^-5*e^(-5/(12.8*10^-6*0.885*10^6)) = 4.36*10^-5 A <----answer
for t = 10s,
i(10) = 6.78*10^-5*e^(-10/(12.8*10^-6*0.885*10^6)) = 2.8*10^-5 A <-----answer
for t = 20s,
i(20) = 6.78*10^-5*e^(-20/(12.8*10^-6*0.885*10^6)) = 1.16*10^-5 A <------answer
for i = 100s,
i(100) = 6.78*10^-5*e^(-100/(12.8*10^-6*0.885*10^6)) = 9.94*10^-9 A <-----answer

