Use Boolean algebra to prove the following equations Describ
Solution
a) (x+y)(x+z)= x.x+x.z+x.y+y.z (distributive law)
=x+x.z+x.y+y.z , (a.a=a) boolean algebra rule
=x(1+z)+x.y+y.z = x.1+xy+yz, (1+a=1)
= x(1+y)+yz=x+yz
thus LHS=RHS proved
b) xy+yz+x\'z=xy+x\'z
xy+(x+x\')yz+x\'z=xy+xyz+x\'yz+x\'z (x=x\'=1 and distibutive law)
=xy(1+z)+x\'z(1+y)=xy+x\'z proved
F=(w\'z+xy\')+(x+y\')+(w+z)
=((w\'z+xy\')+(x+y\')+(w+z))\'
let, w\'z+xy\'=A, x+y\'=B, w+z=C
applying demorgans theorem(A+B+C)\'=A\'.B\'.C\'
=(w\'z+xy\')\' (x+y\')\' (w+z)\'
=(w\'z)\'.(xy\')\' (x\'.y\'\') (w\'.z\') (A.B.C)\'=A\'+B\'+C\'
=(w\'\'+z\') (x\'+y\'\') (x\'.y)(w\'.z\')
=(w+z\')(w\'.z\')(x\'+y)(x\'.y)
=(w.w\'.z\'+w\'.z\'.z\')(x\'.x\'.y+x\'.y.y) (distributive law)
=(0+w\'.z\')(x\'y+x\'y) (A.A\'=0,A.A=A,)
=(w\'z\')(x\'y) (A+A=A,A+0=A)
