Using the fact that Let p be a prime number and let a1 a2
Using the fact that:
Let p be a prime number and let a1, a2, . . . , an, n 2, be integers such that p | a1a2 · · · an. Then p | ai for some index i, 1 i n
Prove that if a^k = p(b^k) then p | gcd(a,b)
Solution
a^k=pb^k
Hence, p|a using the fact given in the problem. So , a=mp for some integer m
So,
(mp)^k=pb^k
m^kp^{k-1}=b^k
Hence, p|b^k and again using the given fact
p|b
So, p|a and p|b
HEnce, p| gcd(a,b)
