cosA1sinA1sinAcosASolutionHope you want this expression to b
[(cosA)/(1+sinA)]+[(1+sinA)/(cosA)]
Solution
Hope you want this expression to be simplified .
Simplification:
[(cosA)/(1+sinA)+[(1+sinA)/cosA)]
There are two terms with different denominators. We write equivalent expressions by making a common denominator with the LCM, (1+sinA)cosA, of the denominators:
[(cosA)^2+(1+sinA)^2]/[(1+sinA)(cosA)]
Rewrite the above expression, expanding (1+sinA)^2 =1+2sinA+(sinA)^2:
[(cosA)^2+1+2sinA+(sinA)^2]/[(1+sinA)(cosA)]
Rearrange the numerator:
[(cosA)^2+(sinA)^2+1+2sinA]/[(1+sinA)(cosA)]
(cosA)^2+(sinA)^2=1 is a trigometic identity. So we can replace (cosA)^2+(sinA)^2 by 1:
[1+1+2sinA]/[(1+sinA)(cosA)]
=[2+2sinA)/[1+sinA)cosA]
=2(1+sinA)/[(1+sinA)cosa)]
=2/cosA
=2secA. Therefore,
[cosA/(1+sinA)]+ [(1+sinA)/cosA] = 2secA or 2/cosA
Hope this helps.
![[(cosA)/(1+sinA)]+[(1+sinA)/(cosA)]SolutionHope you want this expression to be simplified . Simplification: [(cosA)/(1+sinA)+[(1+sinA)/cosA)] There are two term [(cosA)/(1+sinA)]+[(1+sinA)/(cosA)]SolutionHope you want this expression to be simplified . Simplification: [(cosA)/(1+sinA)+[(1+sinA)/cosA)] There are two term](/WebImages/23/cosa1sina1sinacosasolutionhope-you-want-this-expression-to-b-1055835-1761550821-0.webp)