Suppose sin alpha 13 with alpha is Quodrant I and cos beta
Suppose sin alpha = 1/3, with alpha is Quodrant I, and cos beta = -1/4, with beta in Quodrant II Find the exact value of each of the following. sin (alpha + beta) cos(alpha - beta)
Solution
sin =1/3 =>cos =((32-12))/3 =(8)/3
cos =-1/4=>sin=((42-12))/4=(15)/4
20)sin(+)=sincos+cossin
sin(+)=(1/3)(-1/4) +((8)/3)((15)/4)
sin(+)=(-1/12) +((120)/12)
sin(+)=((120) -1)/12
21)cos(-)=cos()cos() +Sin()sin()
cos(-)=((8)/3)(-1/4) +(1/3)((15)/4)
cos(-)=((-8)/12) +((15)/12)
cos(-)=(15-8)/12
