If x is 1 mod 3 0 mod 5 and 0 mod 11 what is it in mod 165 b
If x is 1 mod 3, 0 mod 5, and 0 mod 11, what is it in mod 165? (b) If y is 0 mod 3, 1 mod 5, and 0 mod 11, what is it in mod 165? (c) If z is 0 mod 3, 0 mod 5, and 1 mod 11, what is it in mod 165? (d) Compute 2x + 4y + 8z, answering in mod 165.
Solution
x=1 mod 3
x=0 mod 5
x=0 mod 11
Hence, x=0 mod 55
x=55m
x=1 mod 3
55m=1 mod 3
m=1 mod 3
m=3n+1
x=55m=55(3n+1)=165n+55
HEnce, x=55 mod 165
b)
x=0 mod 3, x=0 mod 11
So, x=0 mod 33
x=33 m
x=1 mod 5
33m=1 mod 5
3m=1 mod 5
6m=2 mod 5
m=2 mod 5
m=5n+2
x=33m=33(5n+2)=165n+66
x=66 mod 165
c)
x=0 mod 3, x=0 mod 5
x=0 mod 15
x=15m
x=1 mod 11
15m=1 mod 11
4m=1 mod 11
3*4m=3 mod 11
12m=m=3 mod 11
m=11n+3
x=15m=15(11n+3)=165n+45
x=45 mod 165
d)
2x+4y+8z=2*55+4*66+8*45=734=74 mod 165

