Minimize P 6x 8y 20pts Subject to 40x 10y 2400 10x 15y 2
Minimize: P = 6x + 8y (20pts)
Subject to:
40x + 10y 2400
10x + 15y 2100
5x + 15y 1500
x 0; y 0
Solution
The given Linear Programming Problem is
Minimize: P = 6x + 8y
Subject to:
40x + 10y 2400
10x + 15y 2100
5x + 15y 1500
x 0; y 0
Using Simplex Method, we get,
Tableau #1
x y s1 s2 s3 -p
40 10 -1 0 0 0 2400
10 15 0 -1 0 0 2100
5 15 0 0 -1 0 1500
6 8 0 0 0 1 0
Tableau #2
x y s1 s2 s3 -p
1 0.25 -0.025 0 0 0 60
0 12.5 0.25 -1 0 0 1500
0 13.75 0.125 0 -1 0 1200
0 6.5 0.15 0 0 1 -360
Tableau #3
x y s1 s2 s3 -p
1 0 -0.0272727 0 0.0181818 0 38.1818
0 0 0.136364 -1 0.909091 0 409.091
0 1 0.00909091 0 -0.0727273 0 87.2727
0 0 0.0909091 0 0.472727 1 -927.273
Tableau #4
x y s1 s2 s3 -p
1 0 -0.03 0.02 0 0 30
0 0 0.15 -1.1 1 0 450
0 1 0.02 -0.08 0 0 120
0 0 0.02 0.52 0 1 -1140
Optimal Solution : x = 30, y = 120
Minimum P = 6x + 8y= 6(30)+8(120) =180+960 = 1140
Minimum P = 1140
***************************************

