Solve the initial value problem x1 x1 x2 exp2t x2 x1 3x
Solve the initial value problem x_1\' = x_1 + x_2 + exp(2t) x_2\' = -x_1 + 3x_2 where x_1(1)=0, x_2(1)=0.
Solution
x1\'-x2\'=2x1-2x2=2(x1-x2)=(x1-x2)\'
So, Integrating gives
x1-x2=Ae^{2t}
x1=x2+Ae^{2t}
x2\'=-x2-Ae^{2t}+3x2
x2\'-2x2=-Ae^{2t}
INtegrating factor is exp(-2t)
(x2\'-2x2)exp(-2t)=-A
(x2 exp(-2t))\'=-A
x2 exp(-2t)=-At+B
x2=exp(2t)(-At+B)
x1=x2+Ae^{2t}=exp(2t)(-At+A+B)
x1(1)=0=-A+A+B
So, B=0
x2(1)=A=0
SO trivial solution
