Using the method of undertermined coe cients solve for y giv
Using the method of undertermined coe¢ cients, solve for y given the following info
 thank you.
Solution
given that y\"+y=g(t) here i sloved this prblem using equivalent equation
y\'\' + y = t/2 + u(t6) (3  t/2)
 y\'\' + y = t/2  1/2 u(t6) (t  6)
 
 Use Laplace transforms:
 s² Y(s)  s y(0)  y\'(0) + Y(s) = 1/2 [ 1/s²  e^(6s)/s * 1/s² ]
 s² Y(s)  0  1 + Y(s) = 1/2 [ 1/s²  e^(6s)/s * 1/s² ]
 Y(s) (s² + 1) = 1/2 [ 1/s²  e^(6s)/s * 1/s² ] + 1
 Y(s) (s² + 1) = 1/2 [ (2s²+1)/s²  e^(6s)/s * 1/s² ]
 Y(s) = 1/2 [ (2s²+1)/(s²(s²+1))  e^(6s)/s * 1/(s²(s²+1)) ]
 
 Using partial fractions, we get:
 Y(s) = 1/2 [ 1/s² + 1/(s²+1)  e^(6s)/s * (1/s²  1/(s²+1)) ]
 
 Transform is
 y(t) = 1/2 [ t + sin(t)  u(t6) ((t6)  sin(t6)) ]
 y(t) = 1/2 t + 1/2 sin(t)  1/2 u(t6) (t  6  sin(t6)
here i got the solution in sin same for coe

