Solve the initialvalue problem d2ydt2 10 dydt 25 y 0 y1
Solve the initial-value problem d^2y/dt^2 + 10 dy/dt + 25 y = 0, y(1) = 0, y\'(1) = 1.
Solution
This is a linear homogeneous recurrence
assume solution of the form: y=exp(kt) Subsituting gives
k^2+10k+25=0
k=-5 and repeated roots
So,
y=exp(-5t)(A+Bt)
y(1)=exp(-5t)(A+B)=0
So, A=-B
y=B exp(-5t)(-1+t)
y\'(t)=B exp(-5t)-5Bexp(-5t)(-1+t)
y\'(1)=B exp(-5)=1
B=exp(5)
y= exp(5-5t)(-1+t)
