Find the minimum value of fx y z x2 y2 z2 5 subject to x
Find the minimum value of
f(x, y, z) = x2 + y2 + z2 5
subject to x = y.
find fmin =
Also find the corresponding point
(x, y, z).=
Solution
f(x, y, z) = x2 + y2 + z2 5
x=y
let g(x,y,z)= x -y
by lagrange multipliers
f=g
<2x,2y,2z>=<1,-1,0>
2x= ,2y=- ,2z=0
x=/2 ,y=-/2 , z=0
we have x=y
/2 =-/2
/2 +/2 =1
=1
x=1/2 ,y=-1/2 ,z =0
f min= f(1/2 ,-1/2 ,0)= (1/2)2 + (-1/2)2 + 02 5
f min= f(1/2 ,-1/2 ,0)= -4.5
corresponding point (x, y, z).=(1/2 ,-1/2 ,0)
