a Determine the vector and parametric equations of the plane

a) Determine the vector and parametric equations of the plane that passes through the points Q(-3/2, 0, 0), R(0, -1, 0), and S(0, 0, 3).

b) Determine if the point P(1, 5, 6) is a point on this plane.

Solution

a) Q(-3/2, 0, 0), R(0, -1, 0), and S(0, 0, 3)

Equation of plane : a(x -xo) +b(y -yo) + c(z- zo) =0

( xo, yo, zo ) is a point on plane.

( a. , b , c ) vector perpendicula to plane

V1 = QR = < 3/2 , -1 , 0 > and

V2 = QS = < 0 , 1 , 3>

vector product of V1 x V2 = < -3 , -9/2 , 3/2 >

So, ( a. , b , c ) =  < -3 , -9/2 , 3/2 >

-3(x -xo) + (9/2)(y - yo) +(3/2)(z -zo) =0

use any of the three point for xo,yo, zo,

So, I use R : -3( x -0) - 9(y +1)/2 + 3( z-0)/2 =0

-3x -9y/2 -9/2 +3z/2 =0

-3x -9y/2 +3z/2 = 9/2

-6x -9y +6z = 9

simplify : -2x -3y +2z =3 ( cartesian Equation of plane)

vector form : we can write z = (1/2)( 3 +2x +3y)

So, ( x , y , z) = ( 0, 0, 3) + x( 1, 0 , 2) +y( 0, 1 , 3)

( x , y , z) = ( 0,0 , 3) + s( 1, 0 , 2) +t( 0, 1 , 3) vector form

b) Substitute point ( 1 , 5 , 6) to check if it lies on plane:

-2x -3y +2z =3

-2 -15 +12 =3

-5 =3

Point does not satisfy the equation of plane so, it does not lie on plane

a) Determine the vector and parametric equations of the plane that passes through the points Q(-3/2, 0, 0), R(0, -1, 0), and S(0, 0, 3). b) Determine if the poi

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site