show that if v1 v2 v3 are linearly independent then the vect
show that if v1, v2, v3 are linearly independent, then the vectors w1 = v1 + v2, w2 = v1 + v3, and w3 = v2 +v3 are also linearly independent.
Solution
we need to prove that if v1, v2, v3 are linearly independent, then the vectors w1 = v1 + v2, w2 = v1 + v3, and w3= v2 +v3 are also linearly independent.
we know that vectors v1 , v2 ,v3 are linearly independent if and only if some linear combination of v1 , v2 , v3 adds up to 0, it turns out that c1, c2, c3 are all zero
means v1 , v2 , v3 are linearly independent if
c1v1 + c2v2 + c3v3 = 0 and c1 = c2 = c3 = 0
simillarly vectors w1 , w2 , w3 are linearly independent if d1w1 + d2w2 + d3w3 = 0 while d1 = d2 = d3 = 0
we have,
w1 = v1 + v2
w2 = v1 + v3
w3 = v2 + v3
we can write,
d1(v1+v2) + d2(v1+v3) + d3(v2+v3) = 0
if we proved that d1 =d2 = d3 = 0 then we can say that w1 , w2 , w3 are linearly independent
rearranging we have,
(d1+d2)v1 + (d1+d3)v2 + (d2+d3)v3 = 0
Because v1, v2, v3 are linearly independent the coefficient of v1 , v2 , v3 must be 0
so we can say that,
d1 + d2 = 0 -------------1)
d1 + d3 = 0 ---------------2)
d2 + d3 = 0 ----------------3)
subtract 2) from 1) we have,
d1 + d2 - d1 - d3 = 0
d2 - d3 = 0 ------------4)
subtract 3) from 4) we have,
d2 - d3 - d2 - d3 = 0
-2d3 = 0 so d3 = 0
put d3 = 0 in 4) we have,
d2 - 0 = 0 so d2 = 0
put d2 = 0 in 1) we have
d1 + 0 0 so d1 =0
hence we have d1 = d2 = d3 = 0
we can say that w1, w2 , w3 are linearly independent

