find one solution of x2yxyx21y0 near x0SolutionDividing both

find one solution of x2y\'\'+xy\'+(x2-1)y=0 near x=0

Solution

Dividing both sides by x2 yields

                                    y\" + P(x)y\' + Q(x)y = 0,

                        with     P(x) = (1/x) and Q(x) = [(x2 – 1) / x2] . Thus, x = 0 is a regular

                        singular point. Substituting

                                    y = xn=0 anxn                                                                                 (b)

                        and its derivatives into equation (a), we find

                        0 = a0(2 – 1)x + a1(( + 1)2 – 1)x1+ + n=0 [an(( + n)2 – 1) + an–2] xn+ .

                                    Equating all the coefficients of the powers of x to zero, we find

                                    (2 – 1)a0 = 0,                                                                                     (c)

                          (( + 1)2 – 1)a1 = 0,                                                                                      (d)

                        and, for n 2,

                                    an(( + n)2 – 1) + an–2 = 0,

                        or,        an = [(– 1) / {( + n)2 – 1}] an–2 ,         n 2.                                      (e)

                                    Equation (c) gives us the indicial equation

                                    2 – 1 = 0

                        with roots 1 = – 1 and 2 = + 1. Since 12 = – 2 is an integer, we

                        consider the larger root 2 = 1. Letting = 1 in (d) and (e) gives

                                    a1 = 0                                                                                                  (f)

                        and for n 2

                                    an = [(– 1) / {n(n + 2)}] an–2 .                                                              (g)

                                    From (f) and (g) we immediately find

                                    0 = a1 = a3 = a5 ... = a2n+1 = ...

                        and     a2n = [(– 1) / {2n(2n + 2)}] a2n–2 ,

                        or         a2n = [(– 1) / {4n(n + 1)}] a2n–2 ,                                                         (h)

                        for n 1.

                                    Applying (h) repeatedly, we find for n 1

                                    a2n = [{(– 1)n} / {4nn! (n + 1)!}] a0 .

                        Thus   y1(x) = a0x n=0 [{(– 1)n} / {4n n! (n + 1)!}] x2n

                        gives one family of solutions to (a).

                                    To find the second family of solutions to (a) we use equations (d)

                        and (e) repeatedly to obtain an in terms of : (d) gives a1 = 0, hence,

                        by (e),

                                    0 = a1 = a3 = a5 = … = a2n+1 = …     .

                                    Equation (e) yields:

                                    a2 = a2() = [(– 1) / {( + 1) ( + 3)}] a0 ,

                                    a4 = a4() = [{(– 1)2} / {( + 1) ( + 3)2 ( + 5)}] a0 ,

                                    a6 = a6() = [{(– 1)3} / {( + 1) ( + 3)2 ( + 5)2 ( + 7)}] a0, etc.

                        Thus, since ( – 1) = ( – (– 1)) = ( + 1), we consider

                             ( + 1)y(x, ) = ( + 1) [n=0 an ()xn+] ,

                        or ( + 1)y(x, )

                                    = [( + 1)a0x – [1 / ( + 3)] a0x2+ + [1 / {( + 3)2 ( + 5)}]a0x4+

                                                                        – [1 / {( + 3)2 ( + 5)2 ( + 7)}] a0x6+ + …] .

                                    Differentiating both sides with respect to ,

                        ( / ) [( + 1)y(x, )]

                        = [ a0x + a0( + 1)x(log x) + [1 / {( + 3)2}]a0x2+ – [(a0x2+) / ( + 3)](log x)

                           – [(2 a0x4+) / {( + 3)3( + 5)}] – [(a0x4+) / {( + 3)2( + 5)2}]

                           + [{a0x4+(log x)} / {( + 3)2( + 5)}] + [(2a0x6+) / {( + 3)3( + 5)2( + 7)}]

                           + [(2a0x6+) / {( + 3)2( + 5)3( + 7)}] + [(a0x6+) / {( + 3)2( + 5)2( + 7)2}]

                                                                        – [{a0x6+ (log x)} / {( + 3)2 ( + 5)2 ( + 7)}] ].

                                    The right hand side of the last equation was obtained with the aid of

                        Leibniz’s rule for the derivative of a product:

                        (g1(x)g2(x) … gn(x))\'

                                    = g1\'(x)g2(x) … gn(x) + g1(x)g2\'(x) … gn(x) + … + g1(x)g2(x) … gn\'(x) .

                                    We then obtain, upon substituting = – 1,

                           y2(x) = ( / ) [( + 1)y(x, )] |=–1

                                    = a0[ x–1 + 0 + (1/4) x – (1/2) x (log x) – (1 / 16) x3 – (x3 / 64)

                                                + [{x3 (log x)} / 16] + (x5 / 384) + (x5 / 768) + (x5 / 304)

                                                                                                            – [{x5 (log x)} / 384] + …],

                        or y2(x) = a0[x–1 + (1/4) x – (5 / 64) x3 + (10 / 2304) x5 – …]

                                                                        + a0 (– log x) [(x/2) – (x3 / 16) + (x5 / 384) – …] ,

                        or y2(x) = [a0x–1 {1 + (1/4) x2 – (5 / 64) x4 + (10 / 2304) x6 – …}

                                                                                                                        – (1/2)(log x) y1(x)].

                                    The general solution to equation (a) is, therefore,

                                    y = b1y1(x) + b2y2(x),

                        with b1 and b2 arbitrary constants.

                                    Note that the expression

                                    b1y1(x) + b2y2(x)

                        would appear to contain three arbitrary constants b1, b2, and a0:

                        b1y1 + b2y2 = b1a0(a series in x) + b2a0 (a sum of two series in x)

                                    But b1a0 and b2a0 both run over the real numbers. Thus b1a0 and

                        b2a0 are, therefore, only two arbitrary constants.

find one solution of x2y\'\'+xy\'+(x2-1)y=0 near x=0SolutionDividing both sides by x2 yields y\
find one solution of x2y\'\'+xy\'+(x2-1)y=0 near x=0SolutionDividing both sides by x2 yields y\
find one solution of x2y\'\'+xy\'+(x2-1)y=0 near x=0SolutionDividing both sides by x2 yields y\

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site