Verify the identity cosx ycosx cosy Verify the identity sin
Verify the identity: cos(x + y)/cosx cosy Verify the identity: sin^2x - sin^2y = sin(x + y)sin(x - y)
Solution
1) cos(x+y)/cosxcosy = 1 - tanxtany
LHS : cos(x+y)/cosxcosy
= [cosxcosy -sinxsiny ]/cosxcosy
= 1- sinxsiny/cosxcosy
= 1 - (sinx/cosx)(siny/cosy)
= 1 - tanxtany
RHS
2) sin^2x - sin^2y = sin(x+y)sin(x-y)
RHS sin(x+y)sin(x-y)
= [ sinxcosy +cosxsiny][ sinxcosy - cosxsiny]
= sin^2xcos^2y - sinxcosycosxsiny +cosxsinxsinycosy - cos^2xsin^2y
=sin^2xcos^2y - cos^2xsin^2y
= sin^2x - sin^2y
