What are the vertical horizontal asymptotes x intercept and
What are the vertical, horizontal asymptotes, x intercept, and y intercept of the function r(x) = (x+2) / (x^2 - 4x - 5)
Solution
r(x) = (x+2)/(x^2 - 4x - 5)
r(x) = (x+2)/((x - 5)(x+1))
vertical asymptotes =>
denominator =0
x-5=0 , x+1=0
x =5 , x =-1
horizontal asymptote =>
y =limx-> (x+2)/((x - 5)(x+1))
y =limx-> x(1+(2/x))/(x2(1 - (5/x))(1+(1/x)))
y =limx-> (1+(2/x))/(x(1 - (5/x))(1+(1/x)))
y=(1+0)/((1-0)(1+0))
y =1/
y =0 is horizontal asymptote
x intercept:
r(x)=0
(x+2)/(x^2 - 4x - 5)=0
x+2=0
x=-2
x intercept (-2,0)
y intercept:
x =0
y=(0+2)/(0^2 - 4*0 - 5)
y =-2/5
y intercept (0,-2/5)
