A campus newspaper reported that 20 of all students live in
A campus newspaper reported that 20% of all students live in the dorms. A random sample of 100 students is selected for a particular study. (round all calculations to four decimal places where necessary).
a. At 95% confidence level, what is the margin of error?
b. develop a 95% confidence interval estimate for the proportion of all students that live in the dorms
Solution
a)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.2          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.04          
               
 Now, for the critical z,              
alpha/2 = 0.025
Thus, z(alpha/2) = 1.959963985
Thus,
Margin of error = z(alpha/2)*sp = 0.078398559 [ANSWER]
*********************
b)
           
 lower bound = p^ - z(alpha/2) * sp =   0.121601441          
 upper bound = p^ + z(alpha/2) * sp =    0.278398559          
               
 Thus, the confidence interval is              
               
 (   0.121601441   ,   0.278398559   ) [ANSWER]

