Q2 Iffx 6 XINX find f6 Use implicit differentiation to find
Q2:
Solution
1)Let y = f(x)
=>y = 6xln(x)
=>ln(y) = ln(6xln(x))
=>ln(y) = ln(6) + ln(xln(x))
=>ln(y) = ln(6) + ln(x)ln(x)
Differentiating (1) w.r.t to x, we get
=>(1/y)*(dy/dx) = 0 + (1/x)*ln(x) + ln(x)*(1/x) = (2/x)*ln(x)
=>dy/dx) = (2y/x)*ln(x)
=>f\'(x) = (2f(x)/x)*ln(x)
=>f\'(6) = (2f(6)/6)*ln(6) = 88.832
2)xy3 + xy = 18
Differentiating w.r.t. x we get,
=>y3 + 3xy2*(dy/dx) + y + x*(dy/dx) = 0
=>dy/dx*(3xy2+x) = -(y+y3)
=>dy/dx = -(y+y3)/(3xy2+x)
Therefore dy/dx at (9,1) = -1/18
