Answer 2 If a and b arc constants and X a discrete random va
Answer
2. If a and b arc constants and X a discrete random variable, prove that E(aX + b) = aE(X) + b. (Hint: This is the discrete ease for Theorem 4.2 on page 116 of hour text book.]Solution
if x1,x2,x3,x4..........,xn are discrete random variables, having mean = E(x)
E(x)= (x1+x2+x3+......+xn)/n...........................(1)
Now,
For,
y = ax+b
so,
y1 = ax1+b
y2 = ax2+b
y3= ax3+b
.....
......
yn = axn+b
So,
E(y) = (y1+y2+y3+...........+yn)/n
E(y) = (ax1+b+ax2+b+ax3+b+.............+axn+b)/n
E(y) = [a(x1+x2+x3+.....xn)+nb]/n
E(y) = a*[x1+x2+x3+....+xn]/n +b
E(y) = a*E(x) + b
Hence it is proved
