A tourist bureau survey showed that 75 of those who seek inf
A tourist bureau survey showed that 75% of those who seek information about the state actually come to visit. The office received 8 requests for information. Find:
a) the probability that more than five of the people will visit
b) the probability that at least 2 of the people will NOT visit
c) the probability that less than 4 of the people will visit
d) the probability that 4-6, inclusive, of the people will visit
e) what is the expected number of visitors from this group
Solution
a)
Note that P(more than x) = 1 - P(at most x).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    8      
 p = the probability of a success =    0.75      
 x = our critical value of successes =    5      
           
 Then the cumulative probability of P(at most x) from a table/technology is          
           
 P(at most   5   ) =    0.321456909
           
 Thus, the probability of at least   6   successes is  
           
 P(more than   5   ) =    0.678543091 [ANSWER]
******************
b)
Note that P(at least x) = 1 - P(at most x - 1).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    8      
 p = the probability of a success =    0.25      
 x = our critical value of successes =    2      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   1   ) =    0.367080688
           
 Thus, the probability of at least   2   successes is  
           
 P(at least   2   ) =    0.632919312 [ANSWER]
**********************
c)
Note that P(fewer than x) = P(at most x - 1).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    8      
 p = the probability of a success =    0.75      
 x = our critical value of successes =    4      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   3   ) =    0.027297974
           
 Which is also          
           
 P(fewer than   4   ) =    0.027297974 [ANSWER]
*********************
d)
Note that P(between x1 and x2) = P(at most x2) - P(at most x1 - 1)          
           
 Here,          
           
 x1 =    4      
 x2 =    6      
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    8      
 p = the probability of a success =    0.75      
           
 Then          
           
 P(at most    3   ) =    0.027297974
 P(at most    6   ) =    0.632919312
           
 Thus,          
           
 P(between x1 and x2) =    0.605621338   [ANSWER]
*******************
e)
E(x) = n p = 8*0.75 = 6 [ANSWER]


