Natural Deduction Proof 1 YV NSD VD W 2 SDW WVNY NW n YSW 12
Natural Deduction Proof
1 YV [NSD (VD W)] 2 SDW WVNY NW n> YSW 1234/Solution
Answer :
The premises are given by
Y [ ~ S (V W) ]
S W
W ~ Y
~ W
And the conclusion is ~ V
Proof :
1. S W Premise
2. ~ W Premise
3. ~ S ( 1 ) , ( 2 ) , Modus Tollen\'s rule
4. W ~ Y Premise
5. ~ Y ( 2 ) , ( 4 ) , Disjunctive Syllogism
6. Y [ ~ S (V W) ] Premise
7. ~ S (V W ) ( 5 ) , ( 6 ) , Disjunctive Syllogism
8. V W ( 3 ) , ( 7 ) , Modus Ponen\'s rule
9. ~ V ( 2 ) , ( 7 ) , Modus Tollens Rule
Thus the conclusion ~ V is logically follows from the given premises
![Natural Deduction Proof 1 YV [NSD (VD W)] 2 SDW WVNY NW n> YSW 1234/ SolutionAnswer : The premises are given by Y [ ~ S (V W) ] S W W ~ Y ~ W And the conclus Natural Deduction Proof 1 YV [NSD (VD W)] 2 SDW WVNY NW n> YSW 1234/ SolutionAnswer : The premises are given by Y [ ~ S (V W) ] S W W ~ Y ~ W And the conclus](/WebImages/24/natural-deduction-proof-1-yv-nsd-vd-w-2-sdw-wvny-nw-n-ysw-12-1059482-1761553250-0.webp)