Consider the following linear programming model Min Z 8x1
Solution
Optimise : Z = 8x1 +5x2
subject to : x1>=0 ; x2>=0
-3x1 +2x2 <= 30
2x1 +x2 >=50
x1+x2 >=30
Form the tableaus from the inequalties above:
initial tableau of Simplex method consists of all the coefficients of the decision variables of the original problem and the slack, surplus and artificial variables added in second step
Tableau #1
 x1 x2 s1 s2 s3 s4 s5 -p
 1 0 -1 0 0 0 0 0 0
 0 1 0 -1 0 0 0 0 0
 -3 2 0 0 1 0 0 0 30   
 2 1 0 0 0 -1 0 0 50   
 1 1 0 0 0 0 -1 0 30   
 8 5 0 0 0 0 0 1 0
Tableau #2
 x1 x2 s1 s2 s3 s4 s5 -p
 -1 0 1 0 0 0 0 0 0
 0 1 0 -1 0 0 0 0 0
 -3 2 0 0 1 0 0 0 30   
 2 1 0 0 0 -1 0 0 50   
 1 1 0 0 0 0 -1 0 30   
 8 5 0 0 0 0 0 1 0
Tableau #3
 x1 x2 s1 s2 s3 s4 s5 -p
 -1 0 1 0 0 0 0 0 0
 0 -1 0 1 0 0 0 0 0
 -3 2 0 0 1 0 0 0 30   
 2 1 0 0 0 -1 0 0 50   
 1 1 0 0 0 0 -1 0 30   
 8 5 0 0 0 0 0 1 0
Tableau #4
 x1 x2 s1 s2 s3 s4 s5 -p
 0 0.5 1 0 0 -0.5 0 0 25   
 0 -1 0 1 0 0 0 0 0
 0 3.5 0 0 1 -1.5 0 0 105
 1 0.5 0 0 0 -0.5 0 0 25   
 0 0.5 0 0 0 0.5 -1 0 5
 0 1 0 0 0 4 0 1 -200   
Tableau #5
 x1 x2 s1 s2 s3 s4 s5 -p
 0 0 1 0 0 -1 1 0 20   
 0 0 0 1 0 1 -2 0 10   
 0 0 0 0 1 -5 7 0 70   
 1 0 0 0 0 -1 1 0 20   
 0 1 0 0 0 1 -2 0 10   
 0 0 0 0 0 3 2 1 -210   
Optimal Solution: Z = 210 with x1 = 20, x2 = 10


