Consider the following linear programming model Min Z 8x1
Solution
Optimise : Z = 8x1 +5x2
subject to : x1>=0 ; x2>=0
-3x1 +2x2 <= 30
2x1 +x2 >=50
x1+x2 >=30
Form the tableaus from the inequalties above:
initial tableau of Simplex method consists of all the coefficients of the decision variables of the original problem and the slack, surplus and artificial variables added in second step
Tableau #1
x1 x2 s1 s2 s3 s4 s5 -p
1 0 -1 0 0 0 0 0 0
0 1 0 -1 0 0 0 0 0
-3 2 0 0 1 0 0 0 30
2 1 0 0 0 -1 0 0 50
1 1 0 0 0 0 -1 0 30
8 5 0 0 0 0 0 1 0
Tableau #2
x1 x2 s1 s2 s3 s4 s5 -p
-1 0 1 0 0 0 0 0 0
0 1 0 -1 0 0 0 0 0
-3 2 0 0 1 0 0 0 30
2 1 0 0 0 -1 0 0 50
1 1 0 0 0 0 -1 0 30
8 5 0 0 0 0 0 1 0
Tableau #3
x1 x2 s1 s2 s3 s4 s5 -p
-1 0 1 0 0 0 0 0 0
0 -1 0 1 0 0 0 0 0
-3 2 0 0 1 0 0 0 30
2 1 0 0 0 -1 0 0 50
1 1 0 0 0 0 -1 0 30
8 5 0 0 0 0 0 1 0
Tableau #4
x1 x2 s1 s2 s3 s4 s5 -p
0 0.5 1 0 0 -0.5 0 0 25
0 -1 0 1 0 0 0 0 0
0 3.5 0 0 1 -1.5 0 0 105
1 0.5 0 0 0 -0.5 0 0 25
0 0.5 0 0 0 0.5 -1 0 5
0 1 0 0 0 4 0 1 -200
Tableau #5
x1 x2 s1 s2 s3 s4 s5 -p
0 0 1 0 0 -1 1 0 20
0 0 0 1 0 1 -2 0 10
0 0 0 0 1 -5 7 0 70
1 0 0 0 0 -1 1 0 20
0 1 0 0 0 1 -2 0 10
0 0 0 0 0 3 2 1 -210
Optimal Solution: Z = 210 with x1 = 20, x2 = 10

