Find the inverse Laplace transform of Fs 4s 4s2 4s 20 ft
Solution
Given that
F(s) = ( -4s + 4 ) / ( s2 + 4s + 20 )
Rewrite F(s) as follows
F(s) = ( -4s - 8 + 12 ) / ( s2 + 4s + 16 + 4 )
F(s) = [ -4(s+2) + 12 ] / [ ( s+2)2 + 16 ]
F(s) = -4(s+2) / [ ( s+2)2 + 16 ] + 12 / [ ( s+2)2 + 16 ]
Take inverse laplace transform of F(s)
L-1 { F(s) } = L-1 { -4(s+2) / [ ( s+2)2 + 16 ] + 12 / [ ( s+2)2 + 16 ] }
L-1 { F(s) } = -4 L-1 { (s+2) / [ ( s+2)2 + 16 } + L-1 { 12 / [ ( s+2)2 + 16 ] }.................................1
Compute
L-1 { (s+2) / [ ( s+2)2 + 16 }
Apply inverse laplace transform rule , if L-1{ F(s) } = f(t) then L-1( F(s-a) ) = eatf(t)
Hence,
L-1 { (s+2) / [ ( s+2)2 + 16 } = e-2t .L-1 { s/(s2 + 16) }
= e-2t . L-1 { s/(s2 + 42) }
= e-2t.cos( 4t ) [ since, L-1( s/(s2+a2) ) = cos( at ) ]
L-1 { 12 / [ ( s+2)2 + 16 ] } = e-2t.L-1 { 12 / (s2 + 16 ) }
= e-2t.L-1 { 3.4 / (s2 + 42 ) }
= e-2t.3.L-1 { 4 / (s2 + 42 ) }
= 3e-2t sin(4t) [since, since, L-1( a/(s2+a2) ) = sin( at ) ]
From equation 1
f(t) = L-1 { F(s) } = -4 L-1 { (s+2) / [ ( s+2)2 + 16 } + L-1 { 12 / [ ( s+2)2 + 16 ] }
= -4e-2t.cos( 4t ) + 3e-2t sin( 4t )
Therefore,
f(t) = -4e-2tcos( 4t ) + 3e-2t sin( 4t )
