Find the inverse Laplace transform of Fs 4s 4s2 4s 20 ft

Find the inverse Laplace transform of F(s) = -4s + 4/s^2 + 4s + 20 f(t) =

Solution

Given that

F(s) = ( -4s + 4 ) / ( s2 + 4s + 20 )

Rewrite F(s) as follows

     F(s) = ( -4s - 8 + 12 ) / ( s2 + 4s + 16 + 4 )

      F(s) = [ -4(s+2) + 12 ] / [ ( s+2)2 + 16 ]

     F(s) = -4(s+2) / [ ( s+2)2 + 16 ] + 12 / [ ( s+2)2 + 16 ]

Take inverse laplace transform of F(s)

L-1 { F(s) } = L-1 { -4(s+2) / [ ( s+2)2 + 16 ] + 12 / [ ( s+2)2 + 16 ] }

L-1 { F(s) } = -4 L-1 { (s+2) / [ ( s+2)2 + 16 } + L-1 { 12 / [ ( s+2)2 + 16 ] }.................................1

Compute

L-1 { (s+2) / [ ( s+2)2 + 16 }

Apply inverse laplace transform rule , if L-1{ F(s) } = f(t) then L-1( F(s-a) ) = eatf(t)

Hence,

        L-1 { (s+2) / [ ( s+2)2 + 16 } = e-2t .L-1 { s/(s2 + 16) }

                                                   = e-2t . L-1 { s/(s2 + 42) }

                                                   = e-2t.cos( 4t )                            [ since, L-1( s/(s2+a2) ) = cos( at ) ]

L-1 { 12 / [ ( s+2)2 + 16 ] } = e-2t.L-1 { 12 / (s2 + 16 ) }

                                        = e-2t.L-1 { 3.4 / (s2 + 42 ) }

                                        = e-2t.3.L-1 { 4 / (s2 + 42 ) }

                                        = 3e-2t sin(4t)          [since, since, L-1( a/(s2+a2) ) = sin( at ) ]

From equation 1

f(t) = L-1 { F(s) } = -4 L-1 { (s+2) / [ ( s+2)2 + 16 } + L-1 { 12 / [ ( s+2)2 + 16 ] }

                          = -4e-2t.cos( 4t ) + 3e-2t sin( 4t )

Therefore,

         f(t) = -4e-2tcos( 4t ) + 3e-2t sin( 4t )

          

 Find the inverse Laplace transform of F(s) = -4s + 4/s^2 + 4s + 20 f(t) = SolutionGiven that F(s) = ( -4s + 4 ) / ( s2 + 4s + 20 ) Rewrite F(s) as follows F(s)

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site