Find the exact value of the trigonometric expression without
Solution
tan( 11pi/6 -3pi/4)
= {tan(11pi/6) - tan(3pi/4) }/( 1 + tan11pi/6*tan3pi/4)
tan( 11pi/6) = -tanpi/6 = -1/sqrt3
tan(3pi/4) = tan(pi -pi/4) = -1/sqrt2
tan( 11pi/6 -3pi/4)
= {tan(11pi/6) - tan(3pi/4) }/( 1 + tan11pi/6*tan3pi/4)
={ -1/sqrt3 +1/sqrt2 }/( 1+1/sqrt6)
= ( sqrt3 - sqrt2)/(sqrt6 +1)
Rationalise the denominator:
=(sqrt3 - sqrt2)(1- sqrt6)/(-5)
= -(sqrt3 - sqrt18 -sqrt2 +sqrt12)/5
= -(sqrt3 -3sqrt3 -sqrt2 +2sqrt3)/5
= -(-sqrt2)/5
= sqrt2/5
