BONUS QUESTION When looking at the Poisson distribution we s
BONUS QUESTION: When looking at the Poisson distribution, we said that if we have a binomial experiment with a large n and a small p, the binomial pmf can be approximated by a Poisson pmf with mu=np. Let\'s verify this proposition: Suppose that 2% of all copies of a particular book are bound incorrectly. Let X be the number of copies that are not bound correctly in a sample of 100. Use both the binomial and Poisson distributions to calculate P(X
Solution
Binomial distribution with n=100 and p=0.02
P(X=x)=100Cx*(0.02^x)*(0.98^(100-x)) for x=0,1,2,...,100
So P(X<=3) = P(X=0)+P(X=1)+P(X=2)+P(X=3)
=100C0*(0.02^0)*(0.98^(100-0))+...+100C3*(0.02^3)*(0.98^(100-3))
=0.8589616
-----------------------------------------------------------------------------------------------------------------------------
Poisson distribution with mean=n*p=100*0.02 =2
P(X=x)=(2^x)*exp(-2)/x!
So P(X<=3)= P(X=0)+P(X=1)+P(X=2)+P(X=3)
=(2^0)*exp(-2)/1+....+(2^3)*exp(-2)/3!
=0.8571235
-----------------------------------------------------------------------------------------------------------------------------
Yes, because both probability are closed.
