If a diver of mass m stands at the end of a diving board wit
Solution
2)
let y=f(x)
replace x with \"a\"
the linear approximation at x=a is given by
y = f1(x)
y = f(a)+f\'(a)*(x-a)
tan(x) = x
f(x)=tan(x)
at x=0
f(0)=tan(0)
f(0)= 0
f\'(x)=1/cos2(x)
f\'(0)=1/cos²(0)
f\'(0)= 1
y=0+1*x
y=x is the linear approximation
The error due to the approximation is:
R=|f(x)-f1(x)|
R=|tan(x)-x|
|tan(x)-x|<0.1
For solving inequality,
find root
tan(x) - x=0.1
interval (0,pi/2)
tan(x) - x - 0.1 = 0,
zero of F(x)=tan(x)- x - 0.1
F\'(x)=1/cos²x-1
x(n+1) = x(n) - F(x(n)) / F\'(x(n))
x(0) = 1
x(1) = 1-(tan1-1 - 0.1) / (1/cos²1-1)
=0.8114
x(2) = 0.8114 - (tan 0.8114 - 0.8114 - 0.1) / (1/cos²0.8114 - 1)
x(2)=0.6694
x(3) = 0.6694 - (tan 0.6694 - 0.6694 - 0.1) / (1/cos²0.6694 - 1)
x(3)=0.63446
x(4) = 0.63446 - (tan 0.63446 - 0.63446 - 0.1) / (1/cos²0.63446 - 1)
x(4) = 0.63168
x=0.632
tan(x) = ( -0.632 , 0.632 )

