A financial consultant has notice that the number of custome

A financial consultant has notice that the number of customers arriving per day follow a Poisson distribution with a mean of 6 customers. The consultant’s overhead requires that at least 5 customers arrive in order that fees cover expenses.

a. Find the probabilities of 0 through 4 customers arriving in a given day. (Note that this involves calculating five probabilities)

b. What is the probability that at least 5 customers arrive?

Solution

a)

Note that the probability of x successes out of n trials is          
          
P(x) = u^x e^(-u) / x!          
          
where          
          
u = the mean number of successes =    6      
          
x = the number of successes =    0      
          
Thus, the probability is          
          
P (    0   ) =    0.002478752 [ANSWER]

*************

Note that the probability of x successes out of n trials is          
          
P(x) = u^x e^(-u) / x!          
          
where          
          
u = the mean number of successes =    6      
          
x = the number of successes =    1      
          
Thus, the probability is          
          
P (    1   ) =    0.014872513 [ANSWER]

*****************

Note that the probability of x successes out of n trials is          
          
P(x) = u^x e^(-u) / x!          
          
where          
          
u = the mean number of successes =    6      
          
x = the number of successes =    2      
          
Thus, the probability is          
          
P (    2   ) =    0.044617539 [ANSWER]

************

Note that the probability of x successes out of n trials is          
          
P(x) = u^x e^(-u) / x!          
          
where          
          
u = the mean number of successes =    6      
          
x = the number of successes =    3      
          
Thus, the probability is          
          
P (    3   ) =    0.089235078 [ANSWER]

*************

Note that the probability of x successes out of n trials is          
          
P(x) = u^x e^(-u) / x!          
          
where          
          
u = the mean number of successes =    6      
          
x = the number of successes =    4      
          
Thus, the probability is          
          
P (    4   ) =    0.133852618 [ANSWER]

*********************************************

b)

P(at least 5) = 1 - [P(0) + P(1) + P(2) + P(3) + P(4)]

= 0.7149435 [ANSWER]

A financial consultant has notice that the number of customers arriving per day follow a Poisson distribution with a mean of 6 customers. The consultant’s overh
A financial consultant has notice that the number of customers arriving per day follow a Poisson distribution with a mean of 6 customers. The consultant’s overh

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site