Find a quadratic polynomial Px ax2 bx c where the coeffic
Find a quadratic polynomial P(x) = ax^2 + bx + c, where the coefficients a, .b, c belong to {0, 1, 2, 3, 4}, such that the following all hold: p(1) equiv 1 (mod 5), p(2) equiv 2 (mod 5), p(3) equiv 4 (mod 5),
Solution
P(1)=a+b+c=1 mod 5
P(2)=4a+2b+c=2=3a+b+a+b+c=3a+b+1=2 mod 5
So, 3a+b=1 mod 5
P(3)=9a+3b+c=4a+3b+c=3a+2b+a+b+c=3a+2b+1=4 mod 5
3a+2b=3 mod 5 and 3a+b=1 mod 5
He,ce b=2 mod 5
But, b belongs to {0,1,2,3,4}
Hence, b=2
3a+b=1 mod 5
3a+2=1 mod 5
3a=-1 mod 5
3*2a=-2 mod 5
a=-2=3 mod 5
a=3 mod 5
Hence, a=3
a+b+c=1 mod 5
3+2+c=5+c=c=1 mod 5
Hence, c=1
So
P(x)=3x^2+2x+1
