With the following data express summary output multiple regr
With the following data express summary output multiple regression of the data below. Please copy and paste the data.
What is the multiple regression Equation??
X1 = Summated Rating
X2 = Coded Location
Y= Cost
| Summated Rating | Coded Location | Cost |
| 49 | 0 | 27 |
| 62 | 0 | 53 |
| 64 | 0 | 53 |
| 68 | 0 | 65 |
| 62 | 0 | 47 |
| 56 | 0 | 46 |
| 62 | 0 | 47 |
| 61 | 0 | 51 |
| 77 | 0 | 81 |
| 58 | 0 | 57 |
| 67 | 0 | 63 |
| 59 | 0 | 53 |
| 54 | 0 | 30 |
| 67 | 0 | 63 |
| 69 | 0 | 68 |
| 54 | 0 | 29 |
| 60 | 0 | 44 |
| 59 | 0 | 48 |
| 63 | 0 | 57 |
| 55 | 0 | 29 |
| 56 | 0 | 34 |
| 63 | 0 | 42 |
| 70 | 0 | 76 |
| 58 | 0 | 42 |
| 66 | 0 | 53 |
| 62 | 0 | 30 |
| 61 | 0 | 64 |
| 73 | 0 | 88 |
| 62 | 0 | 57 |
| 68 | 0 | 82 |
| 60 | 0 | 51 |
| 56 | 0 | 38 |
| 61 | 0 | 41 |
| 59 | 0 | 32 |
| 65 | 0 | 69 |
| 55 | 0 | 45 |
| 64 | 0 | 55 |
| 50 | 0 | 38 |
| 61 | 0 | 54 |
| 65 | 0 | 57 |
| 59 | 0 | 31 |
| 62 | 0 | 62 |
| 55 | 0 | 44 |
| 62 | 0 | 44 |
| 55 | 0 | 43 |
| 58 | 0 | 53 |
| 69 | 0 | 45 |
| 63 | 0 | 55 |
| 74 | 0 | 92 |
| 69 | 0 | 92 |
| 61 | 1 | 35 |
| 68 | 1 | 33 |
| 57 | 1 | 48 |
| 68 | 1 | 52 |
| 65 | 1 | 58 |
| 58 | 1 | 51 |
| 67 | 1 | 48 |
| 58 | 1 | 40 |
| 68 | 1 | 48 |
| 56 | 1 | 36 |
| 61 | 1 | 43 |
| 57 | 1 | 42 |
| 70 | 1 | 39 |
| 62 | 1 | 49 |
| 66 | 1 | 38 |
| 72 | 1 | 48 |
| 63 | 1 | 48 |
| 66 | 1 | 56 |
| 61 | 1 | 41 |
| 63 | 1 | 41 |
| 64 | 1 | 47 |
| 49 | 1 | 30 |
| 58 | 1 | 32 |
| 63 | 1 | 54 |
| 49 | 1 | 32 |
| 64 | 1 | 44 |
| 68 | 1 | 48 |
| 57 | 1 | 45 |
| 62 | 1 | 43 |
| 56 | 1 | 36 |
| 68 | 1 | 48 |
| 65 | 1 | 50 |
| 61 | 1 | 48 |
| 77 | 1 | 61 |
| 54 | 1 | 35 |
| 58 | 1 | 30 |
| 56 | 1 | 37 |
| 71 | 1 | 53 |
| 55 | 1 | 36 |
| 73 | 1 | 46 |
| 78 | 1 | 56 |
| 54 | 1 | 44 |
| 59 | 1 | 29 |
| 60 | 1 | 32 |
| 60 | 1 | 46 |
| 61 | 1 | 47 |
| 56 | 1 | 48 |
| 60 | 1 | 35 |
| 57 | 1 | 31 |
| 52 | 1 | 28 |
Solution
Multiple Regression Equation:
Cost = -38.6837 + 1.4753 * Summated Rating - 9.6475 * Coded Location
| ANOVA | ||||||||
| df | SS | MS | F | Significance F | ||||
| Regression | 2 | 10453.49 | 5226.743 | 60.66509 | 8.15E-18 | |||
| Residual | 97 | 8357.263 | 86.15735 | |||||
| Total | 99 | 18810.75 | ||||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
| Intercept | -38.6837 | 9.429796 | -4.10228 | 8.52E-05 | -57.3992 | -19.9682 | -57.3992 | -19.9682 |
| X Variable 1 | 1.475278 | 0.151247 | 9.754108 | 4.55E-16 | 1.175095 | 1.775462 | 1.175095 | 1.775462 |
| X Variable 2 | -9.64753 | 1.856481 | -5.19667 | 1.12E-06 | -13.3321 | -5.96293 | -13.3321 | -5.96293 |


