A Let gt be the solution of the initial value problem A Let
Solution
Find the general solution by separating the variables and integrating:
2ty\' + y = 0
2t(dy / dt) + y = 0
2t(dy / dt) = -y
dy / y = -1 / 2t dt
1 / y dy = - 1 / t dt / 2
ln|y| = -ln|t| / 2 + C
ln|y| = C - ln|t| / 2
y = ^(C - ln|t| / 2)
y = ^(C - ln|t|)
y = / 2t
y = C / 2t
Find the particular solution by solving for the constant:
When t = 1, y = 1
C = 1
y = 1 / 2t
g(t) = 1 / 2t
