Use this Truth table to prove Ex Px Ex Qx then it is true

Use this Truth table to prove: Ex P(x)* Ex Q(x) <= Ex [P(x) * Q(x)]

1

P(x) Ex P(x) Ex P(x)* Ex Q(x) Ex Q(x) Q(x) <= Ex [P(x)* Q(x)] P(x)*Q(x)
AF 0    0 1 0,1? 0 AF    0 1 0,1?    0 1 0,1? AF
AF 0    0 1 0,1? 1    AF ALOF ALOT AT ?    0 1 0,1?    0 1 0,1?    AF ALOF ALOT AT ?
   AF ALOF ALOT AT ? 1    0 1 0,1? 0    AF ALOF ALOT AT ?    0 1 0,1?    0 1 0,1?    AF ALOF ALOT AT ?
   AF ALOF ALOT AT ? 1    0 1 0,1? 1    AF ALOF ALOT AT ?    0 1 0,1?    0 1 0,1?    AF ALOF ALOT AT ?

Solution

explanation is

P(x) = x    when x >=2

so for all the values less than it will be false , so put zero for those whose \'x\' values are less than \'2\'

if x>= , then , it is true so put \'1\'

Let P(x) = x >= 2 where x is an integer. What are the truth values for the following? Use 0 for false and 1 for true
A. P(-1) 0
B. P(0) 0
C. P(4) 1
D. Ax P(x) 0
E. Ex P(x) 1
Use this Truth table to prove: Ex P(x)* Ex Q(x) <= Ex [P(x) * Q(x)] 1 P(x) Ex P(x) Ex P(x)* Ex Q(x) Ex Q(x) Q(x) <= Ex [P(x)* Q(x)] P(x)*Q(x) AF 0 0 1 0,1

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site