IfP at 22 is 70 kNm and 5 Consider the viscous flow of wate
Solution
V = y^2 i + 2x j
Comparing it V = ui + vj we get
u = y^2
v = 2x
del u / del x = 0
del u / del y = 2y
del v / del x = 2
del v / del y = 0
del (u^2) / del x = del (y^4) / del x = 0
del (uv) / del y = del (2xy^2) / del y = 4xy
del (v^2) / del y = del (4x^2) / del y = 0
del (uv) / del x = del (2xy^2) / del x = 2y^2
-del p / del x = del (u^2) / del x + del (uv) / del y
-del p / del x = 4xy
-del p / del y = del (v^2) / del y + del (uv) / del x
-del p / del y = 2y^2
Partially integrating it, p = -2y^3 /3 + f(x)
Partially differentiating it with x, del p / del x = df/dx = -4xy
f(x) = -2yx^2 + C
So, p = -2y^3 /3 - 2yx^2 + C
At (2,2) p = -2*2^3 /3 - 2*2*2^2 + C = 70
C = 274/3
p = -2y^3 /3 - 2yx^2 + 274/3
a)
At (3,2) we get p = p = -2*2^3 /3 - 2*2*3^2 + 274/3
p = 50 kPa
b)
Water viscosity meu = 8.9*10^-4 Pa-s
dP due to viscosity = meu*(del2 u / del y^2 + del2 v / del x^2)
= 8.9*10^-4 *(2)
At (2,2) dP = 8.9*10^-4 *(2) = 1.78*10^-3 Pa
c)
Water viscosity meu = 8.9*10^-4 Pa-s
Tyx = meu*(del u / del y + del v / del x)
= 8.9*10^-4 *(2y + 2)
At (2,2) Tyx = 8.9*10^-4 *(2*2+2) = 5.34*10^-3 Pa
Since water is Newtonian fluid, other shear stress will be 0.

