stat A civil engineer is analyzing Me compressive strength o
Solution
a)
Note that  
           
 Margin of Error E = t(alpha/2) * s / sqrt(n)              
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    3255.42          
 t(alpha/2) = critical t for the confidence interval =    2.20098516          
 s = sample standard deviation = sqrt(1000) =   31.6227766          
 n = sample size =    12          
 df = n - 1 =    11          
 Thus,              
 Margin of Error E =    20.09215368          
 Lower bound =    3235.327846          
 Upper bound =    3275.512154          
               
 Thus, the confidence interval is              
               
 (   3235.327846   ,   3275.512154   ) [ANSWER]
****************
b)
Note that              
 Margin of Error E = t(alpha/2) * s / sqrt(n)              
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.005          
 X = sample mean =    3255.42          
 t(alpha/2) = critical t for the confidence interval =    3.105806516          
 s = sample standard deviation = sqrt(1000) =   31.6227766          
 n = sample size =    12          
 df = n - 1 =    11          
 Thus,              
 Margin of Error E =    28.3520048          
 Lower bound =    3227.067995          
 Upper bound =    3283.772005          
               
 Thus, the confidence interval is              
               
 (   3227.067995   ,   3283.772005   ) [ANSWER]
***********************
The 99% confidence interval is wider. This is becasue the critical t value is larger, making the margin of error larger as well. This makes sense because you have to expand the interval in order to be \"more confident\" that you got the true mean inside your interval.


