Suppose that 30 samples are taken from a normally distribute
     Suppose that 30 samples are taken from a normally distributed population with an unspecified mean mu and a variance sigma^2 = 1. Below are the 30 samples:  Construct a 95% confidence interval for mu based on the above information. 
  
  Solution
 Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    10.7          
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
 s = sample standard deviation =    1          
 n = sample size =    30          
               
 Thus,              
               
 Lower bound =    10.34216117          
 Upper bound =    11.05783883          
               
 Thus, the confidence interval is              
               
 (   10.34216117   ,   11.05783883   ) [ANSWER]

