Construct a 90 confidence interval for the population mean
Construct a 90% confidence interval for the population mean, . Assume the population has a normal distribution. A sample of 15 randomly selected math majors has a grade point average of 2.86 with a standard deviation of 0.78. Round to the nearest hundredth.
 Question 7 options:
   
 a)    (2.41, 3.42)
   
 b)    (2.28, 3.66)
   
 c)    (2.37, 3.56)
   
 d)    (2.51, 3.21)
Solution
Note that              
 Margin of Error E = t(alpha/2) * s / sqrt(n)              
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    2.86          
 t(alpha/2) = critical t for the confidence interval =    1.761310136          
 s = sample standard deviation =    0.78          
 n = sample size =    15          
 df = n - 1 =    14          
 Thus,              
 Margin of Error E =    0.354719291          
 Lower bound =    2.505280709          
 Upper bound =    3.214719291          
               
 Thus, the confidence interval is              
               
 (   2.51   ,   3.21   ) [ANSWER, D]

