Find parametric equations for the tangent line to the curve
Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x = t, y = e^-3t, z = 4t - t^4; (0, 1, 0) (x(t), y(t), z(t)) =
Solution
Let r(t) = < x , y , z > = < t , e-3t , 4t - t4 >
Then r\'(t) = < 1 , -3e-3t , 4 - 4t3 >
The parameter corresponding to the point (0, 1, 0) is t = 0, so r\'(0) = < 1 , -3 , 4 >
So the parametric equations for the tangent line to the curve with parametric equations x = t , y = e-3t and z = 4 - 4t3
at the point ( 0 , 1 , 0 ) is x = t , y = 1- 3t and z = 4t
