Determine the regression equation to predict Temperature bas

Determine the regression equation to predict Temperature based upon the following experimental data:

Stress (N/m2)

Weight (kg)

Voltage (mV)

Current (mA)

Temperature

8

39

54

36

5680

8

39

52

34

5612

9

41

50

32

5598

9

42

48

30

5570

10

42

47

28

5550

12

44

47

26

5508

14

44

46

25

5488

16

45

45

22

5425

17

46

44

20

5400

17

48

43

20

5395

19

51

41

18

5322

20

53

40

18

5200

22

54

38

15

5180

24

56

36

12

5144

26

66

35

10

5111

28

77

34

8

5056

Be sure to explain how/why you developed your regression equation and support your decisions using appropriate Minitab outputs. Include the appropriate Minitab outputs.

Stress (N/m2)

Weight (kg)

Voltage (mV)

Current (mA)

Temperature

8

39

54

36

5680

8

39

52

34

5612

9

41

50

32

5598

9

42

48

30

5570

10

42

47

28

5550

12

44

47

26

5508

14

44

46

25

5488

16

45

45

22

5425

17

46

44

20

5400

17

48

43

20

5395

19

51

41

18

5322

20

53

40

18

5200

22

54

38

15

5180

24

56

36

12

5144

26

66

35

10

5111

28

77

34

8

5056

Solution

Use the excel \"data analysis\" add on for regression. You will get the following output -

In minitab, you will get the following output from the \'linear regression\'-

Regression Analysis: Temperature versus Stress (N/m2, Weight (kg), Voltage (mV), Current (mA)

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Regression 4 588363 147091 274.26 0.000
Stress (N/m2) 1 8982 8982 16.75 0.002
Weight (kg) 1 469 469 0.87 0.370
Voltage (mV) 1 10237 10237 19.09 0.001
Current (mA) 1 4155 4155 7.75 0.018
Error 11 5900 536
Total 15 594263


Model Summary

S R-sq R-sq(adj) R-sq(pred)
23.1587 99.01% 98.65% 97.92%


Coefficients

Term Coef SE Coef T-Value P-Value VIF
Constant 4810 283 17.02 0.000
Stress (N/m2) -28.69 7.01 -4.09 0.002 59.78
Weight (kg) 1.53 1.64 0.94 0.370 8.01
Voltage (mV) 32.25 7.38 4.37 0.001 55.37
Current (mA) -19.97 7.17 -2.78 0.018 104.97


Regression Equation

Temperature = 4810 - 28.69 Stress (N/m2) + 1.53 Weight (kg) + 32.25 Voltage (mV)
- 19.97 Current (mA)


Fits and Diagnostics for Unusual Observations

Obs Temperature Fit Resid Std Resid
12 5200.0 5247.8 -47.8 -2.36 R

R Large residual

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.99502385
R Square 0.990072462
Adjusted R Square 0.986462448
Standard Error 23.15867812
Observations 16
ANOVA
df SS MS F Significance F
Regression 4 588363.3694 147090.8424 274.2572406 6.19268E-11
Residual 11 5899.568093 536.3243721
Total 15 594262.9375
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 4810.027615 282.6505758 17.01757586 2.99887E-09 4187.917892 5432.137338 4187.917892 5432.137338
Stress (N/m2) -28.68688608 7.009867513 -4.092357812 0.001782375 -44.11550045 -13.2582717 -44.11550045 -13.2582717
Weight (kg) 1.529938229 1.635836224 0.935263694 0.369730264 -2.070513024 5.130389483 -2.070513024 5.130389483
Voltage (mV) 32.24818654 7.381380627 4.368855661 0.00111967 16.00187732 48.49449576 16.00187732 48.49449576
Current (mA) -19.96985962 7.174556765 -2.783427642 0.01779449 -35.76095259 -4.178766648 -35.76095259 -4.178766648
Determine the regression equation to predict Temperature based upon the following experimental data: Stress (N/m2) Weight (kg) Voltage (mV) Current (mA) Tempera
Determine the regression equation to predict Temperature based upon the following experimental data: Stress (N/m2) Weight (kg) Voltage (mV) Current (mA) Tempera
Determine the regression equation to predict Temperature based upon the following experimental data: Stress (N/m2) Weight (kg) Voltage (mV) Current (mA) Tempera
Determine the regression equation to predict Temperature based upon the following experimental data: Stress (N/m2) Weight (kg) Voltage (mV) Current (mA) Tempera
Determine the regression equation to predict Temperature based upon the following experimental data: Stress (N/m2) Weight (kg) Voltage (mV) Current (mA) Tempera

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site