Simplify the expression below cos sin1 x tan1 xSolutioncos
Simplify the expression below: cos (sin^-1 x - tan^-1 x)
Solution
cos ( sin^-1 x - tan^-1 x)
applying cos (a-b) formula
cos (a-b) = cos a cos b + sin a sin b
a = sin^-1 x , b = tan^-1 x
sin a = x ,tan b = x
cos a = sqrt ( 1-x^2 )
cos b = 1 / sqrt ( 1+x^2)
sin b = x / sqrt (1+x^2)
plugging the values in the formula
cos (a-b) = cos a cos b + sin a sin b
cos (a - b ) = sqrt (1-x^2) * 1 / sqrt ( 1+x^2) + x * x / sqrt (1+x^2)
cos ( a- b ) = sqrt ( 1-x^2) / sqrt (1+x^2) + x^2 / sqrt (1+x^2)
cos (a - b ) = { sqrt ( 1- x^2) + x^2 } / sqrt ( 1+x^2)
therefore,
cos ( sin^-1 x - tan^-1 x ) = { sqrt ( 1- x^2) + x^2 } / sqrt ( 1+x^2)
