Please explain all the steps please Consider the function fx

Please explain all the steps please.

Consider the function f(x)=(1-cos2x)/(x3-4x)

Find the domain

Is it an odd or even function?

Evaluate limx-->0f(x)

Classify all discontinuities of the function.

List all vertical asymptotes is any exist.

Is the function continuous at the point x=?

Solution

Domain :
x^3- 4x = 0
x(x^2 - 4) = 0
x = -2 , 0 and 2

So, dmain : {x is anything except -2 , 0 and 2}

----------------------------------------------------------------------

The numerator is even
denominator is odd

So, even/odd = odd

So, odd function

----------------------------------------------------------------------

We can use L Hospital\'s rule here...

Deriving :
f\'(x) = 2sin(2x) / (3x^2 -4)

Now, we apply limit x = 0
2sin(2*0) / (3*0 - 4)
2sin(0) / -4
0 is the limit

0

----------------------------------------------------------------------

Discontinuities :
x = -2 --> inf discontinuity
x = 0 --> same
x = 2 --> Same

--------------------------------------------------------------------

VA :
x = -2 , 0 and 2

---------------------------------------------------------------------

Yes, continuoius when x = pi
because when we sub in pi, denominator AINT 0

Please explain all the steps please. Consider the function f(x)=(1-cos2x)/(x3-4x) Find the domain Is it an odd or even function? Evaluate limx-->0f(x) Classi
Please explain all the steps please. Consider the function f(x)=(1-cos2x)/(x3-4x) Find the domain Is it an odd or even function? Evaluate limx-->0f(x) Classi

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site