Please explain all the steps please Consider the function fx
Please explain all the steps please.
Consider the function f(x)=(1-cos2x)/(x3-4x)
Find the domain
Is it an odd or even function?
Evaluate limx-->0f(x)
Classify all discontinuities of the function.
List all vertical asymptotes is any exist.
Is the function continuous at the point x=?
Solution
Domain :
x^3- 4x = 0
x(x^2 - 4) = 0
x = -2 , 0 and 2
So, dmain : {x is anything except -2 , 0 and 2}
----------------------------------------------------------------------
The numerator is even
denominator is odd
So, even/odd = odd
So, odd function
----------------------------------------------------------------------
We can use L Hospital\'s rule here...
Deriving :
f\'(x) = 2sin(2x) / (3x^2 -4)
Now, we apply limit x = 0
2sin(2*0) / (3*0 - 4)
2sin(0) / -4
0 is the limit
0
----------------------------------------------------------------------
Discontinuities :
x = -2 --> inf discontinuity
x = 0 --> same
x = 2 --> Same
--------------------------------------------------------------------
VA :
x = -2 , 0 and 2
---------------------------------------------------------------------
Yes, continuoius when x = pi
because when we sub in pi, denominator AINT 0

