The function 11x2 can be approximated using a specific type
The function 1/(1-x)^2 can be approximated using a specific type of Taylor Series as follows:
1/(1-x)^2 = 1x^0+2x^1+3x^2+......nx^(n-1) for lxl<1
Write a program to calculate the series approximation using a \"for\" loop running from 1 to k. Also, calculate the correct value. Test the code for k=5, k=15, and k=25 with x=2/3.
Solution
code:
#include <iostream>
#include<math.h>
using namespace std;
float eval(int k)
{
int i=1;
float x =0.66;
float sum=0;
while(i<=k)
{
sum+= (i*pow(x,i-1));
i++;
}
return sum;
}
int main()
{
int k1=5;
int k2=15;
int k3 =25;
cout<<eval(k1)<<endl;
cout<<eval(k2)<<endl;
cout<<eval(k3)<<endl;
return 0;
}
Output:
5.72552
8.54688
8.64799
