7 A refrigerator manufacturer subjects his finished products
7. A refrigerator manufacturer subjects his finished products to a final inspection. Of
interest are two categories of defects: scratches or flaws in the porcelain finish, and
mechanical defects. The number of each type of defect is a random variable. The results
of inspecting 40 are shown in the following table, where X represents the occurrence of
finish defects and Y represents the occurrence of mechanical defects.
Y
X
0 1 2 3 4 5
0 1/40 3/40 2/40 2/40 4/40 3/40
1 5/40 2/40 2/40 1/40 1/40 0
2 4/40 2/40 2/40 1/40 0 0
3 3/40 1/40 0 0 0 0
4 1/40 0 0 0 0 0
(a) Find the marginal distributions of X and Y.
(b) Find the probability distribution of mechanical defects given that there are no finish
defects.
(c) Probability that X>3.
(d) Probability that Y<= 2.
Solution
a) here X takes the values 0,1,2,3,4 Y takes the values 0,1,2,3,4,5
P[X=0]=P[X=0,Y=0]+P[X=0,Y=1]+P[X=0,Y=2]+P[X=0,Y=3]+P[X=0,Y=4]+P[X=0,Y=5]
=1/40+3/40+2/40+2/40+4/40+3/40=15/40
P[X=1]=P[X=1,Y=0]+P[X=1,Y=1]+P[X=1,Y=2]+P[X=1,Y=3]+P[X=1,Y=4]+P[X=1,Y=5]
=5/40+2/40+2/40+1/40+1/40+0=11/40
P[X=2]=P[X=2,Y=0]+P[X=2,Y=1]+P[X=2,Y=2]+P[X=2,Y=3]+P[X=2,Y=4]+P[X=2,Y=5]
=4/40+2/40+2/40+1/40+0+0=9/40
P[X=3]=P[X=3,Y=0]+P[X=3,Y=1]+P[X=3,Y=2]+P[X=3,Y=3]+P[X=3,Y=4]+P[X=3,Y=5]
=3/40+1/40+0+0+0+0=4/40
P[X=4]=P[X=4,Y=0]+P[X=4,Y=1]+P[X=4,Y=2]+P[X=4,Y=3]+P[X=4,Y=4]+P[X=4,Y=5]
=1/40+0+0+0+0+0=1/40
so marginal of X is
X: 0 1 2 3 4
P[X=x]= 15/40 11/40 9/40 4/40 1/40
now for Y
P[Y=0]=P[X=0,Y=0]+P[X=1,Y=0]+P[X=2,Y=0]+P[X=3,Y=0]+P[X=4,Y=0]
=1/40+5/40+4/40+3/40+1/40=14/40
P[Y=1]=P[X=0,Y=1]+P[X=1,Y=1]+P[X=2,Y=1]+P[X=3,Y=1]+P[X=4,Y=1]
=3/40+2/40+2/40+1/40+0=8/40
P[Y=2]=P[X=0,Y=2]+P[X=1,Y=2]+P[X=2,Y=2]+P[X=3,Y=2]+P[X=4,Y=2]
=2/40+2/40+2/40+0+0=6/40
P[Y=3]=P[X=0,Y=3]+P[X=1,Y=3]+P[X=2,Y=3]+P[X=3,Y=3]+P[X=4,Y=3]
=2/40+1/40+1/40+0+0=4/40
P[Y=4]=P[X=0,Y=4]+P[X=1,Y=4]+P[X=2,Y=4]+P[X=3,Y=4]+P[X=4,Y=4]
=4/40+1/40+0+0+0=5/40
P[Y=5]=P[X=0,Y=5]+P[X=1,Y=5]+P[X=2,Y=5]+P[X=3,Y=5]+P[X=4,Y=5]
=3/40+0+0+0+0=3/40
so marginal of Y is
Y: 0 1 2 3 4 5
P[Y=y]: 14/40 8/40 6/40 4/40 5/40 3/40
b) we need to find the probability distribution of Y|X=0
so P[Y=0|X=0]=P[X=0,Y=0]/P[X=0]=(1/40)/(15/40)=1/15
P[Y=1|X=0]=P[X=0,Y=1]/P[X=0]=(3/40)/(15/40)=3/15
P[Y=2|X=0]=P[X=0,Y=2]/P[X=0]=(2/40)/(15/40)=2/15
P[Y=3|X=0]=P[X=0,Y=3]/P[X=0]=(2/40)/(15/40)=2/15
P[Y=4|X=0]=P[X=0,Y=4]/P[X=0]=(4/40)/(15/40)=4/15
P[Y=5|X=0]=P[X=0,Y=5]/P[X=0]=(3/40)/(15/40)=3/15
so the distribution of Y|X=0 is
Y|X=0 0 1 2 3 4 5
P[Y=y|X=0]: 1/15 3/15 2/15 2/15 4/15 3/15
c) P[X>3]=P[X=4]=1/40
d) P[Y<=2]=P[Y=0]+P[Y=1]+P[Y=2]=14/40+8/40+6/40=28/40=7/10

