Show directly that a2 b2c2 d2 ac bd2 ad bc2 for any inte
Show directly that (a^2 + b^2)(c^2 + d^2) = (ac -bd)^2 (ad + bc)^2, for any integers a, b, c, d. This is a result we deduced in class using complex numbers
Solution
L.H.S.=(a2+b2)(c2+d2) = a2c2+a2d2+b2c2+b2d2 ..(i)
R.H.S.= (ac-bd)2+(ad-bc)2 = [(ac)2+(bd)2-2(ac)(bd)]+[(ad)2+(bc)2+2(ad)(bc)] {Using (x±y)2=x2+y2±2xy}
= a2c2+b2d2-2abcd+a2d2+b2c2+2abcd=a2c2+a2d2+b2c2+b2d2 ...(ii)
From (i) and (ii), we get LHS=RHS,
i.e. (a2+b2)(c2+d2) = (ac-bd)2+(ad-bc)2, for all integers a,b,c&d.
