If PE intersection F 012 EF 021 and PFE 03 then PE PE U F
If P(E intersection F) = 0.12, (E|F) = 0.21, and P(F|E) = 0.3, then P(E) P(E U F) Are E and F independent? Why?
Solution
a)
As
P(E) = P(E and F) / P(F|E)
Then
P(E) = 0.12 / 0.3
= 0.4 [ANSWER]
****************************
B)
As
P(F) = P(E and F) / P(E | F)
= 0.12 / 0.21
= 0.571428571
And
P(E U F) =P(E) +P(F) - P(E and F)
= 0.4 + 0.571428571 - 0.12
= 0.851428571 [ANSWER]
********************************
c)
As P(E|F) =/ P(F|E), then no, they are no independent.
