Sex Wt 1 1 789 2 1 744 3 1 691 4 1 749 5 1 646 6 1 637 7 1 7
\"Sex\" \"Wt\"
\"1\" 1 78.9
\"2\" 1 74.4
\"3\" 1 69.1
\"4\" 1 74.9
\"5\" 1 64.6
\"6\" 1 63.7
\"7\" 1 75.2
\"8\" 1 62.3
\"9\" 1 66.5
\"10\" 1 62.9
\"11\" 1 96.3
\"12\" 1 75.5
\"13\" 1 63
\"14\" 1 80.5
\"15\" 1 71.3
\"16\" 1 70.5
\"17\" 1 73.2
\"18\" 1 68.7
\"19\" 1 80.5
\"20\" 1 72.9
\"21\" 1 74.5
\"22\" 1 75.4
\"23\" 1 69.5
\"24\" 1 66.4
\"25\" 1 79.7
\"26\" 1 73.6
\"27\" 1 78.7
\"28\" 1 75
\"29\" 1 49.8
\"30\" 1 67.2
\"31\" 1 66
\"32\" 1 74.3
\"33\" 1 78.1
\"34\" 1 79.5
\"35\" 1 78.5
\"36\" 1 59.9
\"37\" 1 63
\"38\" 1 66.3
\"39\" 1 60.7
\"40\" 1 72.9
\"41\" 1 67.9
\"42\" 1 67.5
\"43\" 1 74.1
\"44\" 1 68.2
\"45\" 1 68.8
\"46\" 1 75.3
\"47\" 1 67.4
\"48\" 1 70
\"49\" 1 74
\"50\" 1 51.9
\"51\" 1 74.1
\"52\" 1 74.3
\"53\" 1 77.8
\"54\" 1 66.9
\"55\" 1 83.8
\"56\" 1 82.9
\"57\" 1 64.1
\"58\" 1 68.85
\"59\" 1 64.8
\"60\" 1 59
\"61\" 1 72.1
\"62\" 1 75.6
\"63\" 1 71.4
\"64\" 1 69.7
\"65\" 1 63.9
\"66\" 1 55.1
\"67\" 1 60
\"68\" 1 58
\"69\" 1 64.7
\"70\" 1 87.5
\"71\" 1 78.9
\"72\" 1 83.9
\"73\" 1 82.8
\"74\" 1 74.4
\"75\" 1 94.8
\"76\" 1 49.2
\"77\" 1 61.9
\"78\" 1 53.6
\"79\" 1 63.7
\"80\" 1 52.8
\"81\" 1 65.2
\"82\" 1 50.9
\"83\" 1 57.3
\"84\" 1 60
\"85\" 1 60.1
\"86\" 1 52.5
\"87\" 1 59.7
\"88\" 1 57.3
\"89\" 1 59.6
\"90\" 1 71.5
\"91\" 1 69.7
\"92\" 1 56.1
\"93\" 1 61.1
\"94\" 1 47.4
\"95\" 1 56
\"96\" 1 45.8
\"97\" 1 47.8
\"98\" 1 43.8
\"99\" 1 37.8
\"100\" 1 45.1
\"101\" 0 67
\"102\" 0 74.4
\"103\" 0 79.3
\"104\" 0 87.5
\"105\" 0 83.5
\"106\" 0 78
\"107\" 0 78
\"108\" 0 85
\"109\" 0 84.7
\"110\" 0 92
\"111\" 0 72.3
\"112\" 0 83
\"113\" 0 96.9
\"114\" 0 85.7
\"115\" 0 85.4
\"116\" 0 85.3
\"117\" 0 93.5
\"118\" 0 86.8
\"119\" 0 87.9
\"120\" 0 87.2
\"121\" 0 53.8
\"122\" 0 89.8
\"123\" 0 91.1
\"124\" 0 88.6
\"125\" 0 92.3
\"126\" 0 97
\"127\" 0 89.5
\"128\" 0 88.2
\"129\" 0 92.2
\"130\" 0 78.9
\"131\" 0 90.3
\"132\" 0 87
\"133\" 0 113.7
\"134\" 0 98
\"135\" 0 100.2
\"136\" 0 79.4
\"137\" 0 90.3
\"138\" 0 77.7
\"139\" 0 83.9
\"140\" 0 75.5
\"141\" 0 60.6
\"142\" 0 71
\"143\" 0 71.8
\"144\" 0 76.8
\"145\" 0 102.7
\"146\" 0 94.25
\"147\" 0 79
\"148\" 0 66.6
\"149\" 0 71.8
\"150\" 0 74.8
\"151\" 0 68.2
\"152\" 0 62.3
\"153\" 0 61
\"154\" 0 77.5
\"155\" 0 57.4
\"156\" 0 71.4
\"157\" 0 70.3
\"158\" 0 80.2
\"159\" 0 84.2
\"160\" 0 111.3
\"161\" 0 80.7
\"162\" 0 97.9
\"163\" 0 123.2
\"164\" 0 72.9
\"165\" 0 83
\"166\" 0 75.9
\"167\" 0 70.7
\"168\" 0 67.1
\"169\" 0 69.2
\"170\" 0 67.05
\"171\" 0 70.5
\"172\" 0 70.8
\"173\" 0 71
\"174\" 0 69.1
\"175\" 0 62.9
\"176\" 0 94.8
\"177\" 0 94.6
\"178\" 0 108.2
\"179\" 0 97.9
\"180\" 0 75.2
\"181\" 0 74.8
\"182\" 0 94.2
\"183\" 0 76.1
\"184\" 0 94.7
\"185\" 0 86.2
\"186\" 0 79.6
\"187\" 0 85.3
\"188\" 0 74.4
\"189\" 0 93.5
\"190\" 0 87.6
\"191\" 0 85.4
\"192\" 0 101
\"193\" 0 74.9
\"194\" 0 87.3
\"195\" 0 90
\"196\" 0 94.7
\"197\" 0 76.3
\"198\" 0 93.2
\"199\" 0 80
\"200\" 0 73.8
\"201\" 0 71.1
\"202\" 0 76.7
Solution
a)
No, we don\'t have paired data as the data are collected from the set of two different groups. The one is female group and the other is male group. So, they are independent of each other. And hence the two sample data are collected independently and are unpaired.
b)
The 95% confidence interval can be calculated in R as -
First Import the data in R using the import button. My data file name is \'ais\'. So, I have used \'ais\'. if you have any other name, edit it.
> L = ais$Sex == \"1\"
> M = ais$Sex == \"2\"
> F_wt = ais[L,]$Wt
> M_wt = ais[M,]$Wt
> t.test(M_wt,F_wt)
Welch Two Sample t-test
data: M_wt and F_wt
t = 9.2381, df = 197.71, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
11.94038 18.42168
sample estimates:
mean of x mean of y
82.52353 67.34250






