The vectors v1 v2 v3 v4 v5 are linearly independent Determin
The vectors v1, v2, v3, v4, v5 are linearly independent. Determine if the following vectors are also linearly independent. Show all work.
a) the vectors v1+ v2, v2 + v3, v3 + v4, v4+ v5, v5- v1
c) the vectors v1 - v2, v2 - v3, v3 - v4
Solution
if v1, v2, v3, v4, v5 are linearly independent. then consider a, b , c, d , e as constants which satisfy,
av1+bv2+cv3+dv4+ev5 =0
then a = b = c = d = e = 0
a) So, let now the constants be k l m n o ,
k(v1+v2) + l (v2+v3) + m (v3 + v4) + n(v4+ v5) + o ( v5- v1)
(k- o)v1 + k+l(v2) + (l+m) v3 + (m+n) v4 + (n+ o) v5
so for these to be linearly independent, k - o = 0 ; k +l = 0 ; l + m = 0 ; m+n = 0 ; n + o = 0
b)apply the same steps for b) and c )
