You have a sample of 40 values with a mean of 123593 and a s

You have a sample of 40 values, with a mean of 123.593 and a standard deviation 3.57996. The values are sorted into bins from 118-120, 120-122, 122-124, 124-126, 126-128, and 128-130.Compute the number of values in each bin if the values follow a normal distribution.

Solution

For 118-120:

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    118      
x2 = upper bound =    120      
u = mean =    123.593      
          
s = standard deviation =    3.57996      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -1.562307959      
z2 = upper z score = (x2 - u) / s =    -1.003642499      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.059107729      
P(z < z2) =    0.157775481      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.098667752      

Thus, in this bin, there are 40*0.098667752 = 3.94671008 [ANSWER]

*************************************

For 120-122:

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    120      
x2 = upper bound =    122      
u = mean =    123.593      
          
s = standard deviation =    3.57996      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -1.003642499      
z2 = upper z score = (x2 - u) / s =    -0.444977039      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.157775481      
P(z < z2) =    0.328168174      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.170392693      

Thus, in this bin, there are 40*0.170392693 = 6.81570772 [ANSWER]

*********************************

For 122-124:

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    122      
x2 = upper bound =    124      
u = mean =    123.593      
          
s = standard deviation =    3.57996      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -0.444977039      
z2 = upper z score = (x2 - u) / s =    0.113688421      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.328168174      
P(z < z2) =    0.545257604      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.21708943      

Thus, in this bin, there are 40*0.21708943 = 8.6835772 [ANSWER]

***************************

For 124-126:

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    124      
x2 = upper bound =    126      
u = mean =    123.593      
          
s = standard deviation =    3.57996      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    0.113688421      
z2 = upper z score = (x2 - u) / s =    0.672353881      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.545257604      
P(z < z2) =    0.749320782      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.204063178      

Thus, in this bin, there are 40*0.204063178 = 8.16252712 [ANSWER]

*******************************

For 126-128:

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    126      
x2 = upper bound =    128      
u = mean =    123.593      
          
s = standard deviation =    3.57996      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    0.672353881      
z2 = upper z score = (x2 - u) / s =    1.231019341      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.749320782      
P(z < z2) =    0.890842185      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.141521402      

Thus, in this bin, there are 40*0.141521402 = 5.66085608 [ANSWER]

***************************

For 128-130:

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    128      
x2 = upper bound =    130      
u = mean =    123.593      
          
s = standard deviation =    3.57996      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    1.231019341      
z2 = upper z score = (x2 - u) / s =    1.789684801      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.890842185      
P(z < z2) =    0.963247701      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.072405517      

Thus, in this bin, there are 40*0.072405517 = 2.89622068 [ANSWER]

You have a sample of 40 values, with a mean of 123.593 and a standard deviation 3.57996. The values are sorted into bins from 118-120, 120-122, 122-124, 124-126
You have a sample of 40 values, with a mean of 123.593 and a standard deviation 3.57996. The values are sorted into bins from 118-120, 120-122, 122-124, 124-126
You have a sample of 40 values, with a mean of 123.593 and a standard deviation 3.57996. The values are sorted into bins from 118-120, 120-122, 122-124, 124-126

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site