use method of undetermined coefficients to find general solu
use method of undetermined coefficients to find general solution y\'\'+y\'-2y=-5cos(t)
Solution
First we find general solution to associated homogeneous ode
y\'\'+y\'-2y=0
We look for :
y=exp(kt)
Substituting gives
k^2+k-2=0
k^2+2k-k-2=0
k(k+2)-(k+2)=0
k=1,k=-2
y=A exp(t)+B exp(-2t)
Now we look for particular solution
Based on inhomogenous part ie 5 cos(t) the guess for particular solution is
yp=A cos(t)+B sin(t)
Subtituting gives
-A cos(t)-B sin(t)-A sin(t)+B cos(t)-2 A cos(t)-2B sin(t)=-5 cos(t)
(-3A+B)cos(t)+(-3B-A)sin(t)=-5 cos(t)
COmparing coefficient gives
A=-3B
-3A+B=-5
9B+B=-5
B=-1/2
A=3/2
y=A exp(t)+B exp(-2t)+3 cos(t)/2-sin(t)/2
