y2xeyxyx find the solutionSolutionlet yx t y tx y txdtd
y\'=(2xe^(y/x)+y)/x find the solution
Solution
let y/x = t
=> y = tx
=> y` = t+xdt/dx
so, equation becomes
t+xdt/dx = (2e^t+t)
xdt/dx = 2e^t
dt/e^t= 2dx/x
integrate on both sides
-e^-t = 2ln(cx) (where c is constant)
t= -ln(ln(cx)^2))
y/x = -ln(ln(cx)^2))
=> y = -x*ln(ln(cx)^2))
